
S o f t w a r e I n t e r r u p t M e c h a n i s m P E - T I - 8 7 9 , R e v . 1

DATE: September 22, 1983

T O : R D & E P e r s o n n e l

F R O M : J e r r y K a z i n

SUBJECT: Software Interrupt Mechanism

REFERENCE: Specifications for PRIMOS Condition Mechanism
PE-T-468

Software Interrupt Control Module Proposal
PE-TI-1004

Software Interrupt Control Module Functional Spec.
PE-TI-1005

KEYWORDS: checks, faults, aborts

ABSTRACT

It has been noted that most of the code in the PRIMOS ring 0 kernel
needs to be executed in an atomic fashion. Prior to Rev. 19.0 unless
s p e c i fi c a l l y i n h i b i t e d , c e r t a i n a s y n c h r o n o u s e v e n t s w o u l d h a v e
interrupted the actions of a module in ring 0. These events fall into
a class known as software interrupts. A software interrupt mechanism
which keeps these events normally inhibited in ring 0 has been created.
This paper discusses software interrupts and this mechanism.

Please note that this revision has been renamed and completely
supercedes the prior release, PE-TI-879.

This document is classified PRIME RD&E RESTRICTED. It
must not be distributed to non-PRIME RD&E Personnel.
When there is no longer a need for this document, it
should be returned to the Bldg. 10 Information Center
by special delivery inter-office mail - or destroyed.

©Prime Computer, Inc., 1983
All Rights Reserved

* PRIME RD&E RESTRICTED *

Software Interrupt Mechanism PE-TI-879, Rev. 1

Table of Contents

1 I N T R O D U C T I O N 3
1 . 1 T h e C h e c k 3
1 . 2 T h e F a u l t 3
1 . 3 T h e S o f t w a r e I n t e r r u p t 4

2 T H E P R O B L E M 4

3 T H E S O L U T I O N 4

4 WHY AND HOW ARE SOFTWARE INTERRUPTS CREATED? 4
4 . 1 S o f t w a r e I n t e r r u p t T y p e s 5
4 . 2 S o f t w a r e I n t e r r u p t C l a s s e s 5

4 . 2 . 1 S i m p l e O n / O f f I n t e r r u p t 5
4 . 2 . 2 T h e C o u n t e d I n t e r r u p t 5
4 . 2 . 3 Q u e u e d D a t a I n t e r r u p t 5

4 . 3 I n t e r r u p t P r i o r i t y 6
4 . 3 . 1 R i n g P r i o r i t y 6
4 . 3 . 2 S i g n a l l i n g P r i o r i t y 6

4 . 4 T h e S o f t w a r e I n t e r r u p t C o n t r o l D a t a B a s e 7
4 . 5 H o w A S o f t w a r e I n t e r r u p t I s S e t U p 8

4 . 5 . 1 S t a r t i n g T h e P r o c e s s O f f - S E T S W I 9
4 . 5 . 2 N o t i c i n g T h e I n t e r r u p t - T h e D i s p a t c h e r 9
4.5.3 Handl ing The Sof tware In terrupt Type - SW$ABT 10
4 . 5 . 4 D e f e r r i n g A S o f t w a r e I n t e r r u p t - S W $ A B T 1 0
4 . 5 . 5 B u i l d i n g T h e D e f e r r e d C r a w l o u t - C R A W L _ 11
4.5.6 Making The Deferred Software Interrupt Happen -

S W F I M 1 1
4.5.7 What If The User Was In Software Interruptable Ring 0

C o d e ? 1 1
4 . 5 . 8 W h a t I f A S o f t w a r e I n t e r r u p t Wa s D i s a b l e d ? 1 2

5 H A N D L I N G S O F T W A R E I N T E R R U P T S I N R I N G 0 1 5
5.1 Comparison Between Old And New Ring 0 Software Interrupt

H a n d l i n g 1 5
5 . 2 E n a b l i n g R e c e i p t O f S o f t w a r e I n t e r r u p t I n R i n g 0 1 5
5 . 3 M a k i n g A C r i t i c a l S e c t i o n I n R i n g 0 1 7
5 . 4 E x a m p l e s O f R i n g 0 U s e r s 1 7

6 MORE INFORMATION ON USING THE SOFTWARE INTERRUPT MECHANISM 18

* PRIME RD&E RESTRICTED * Page

Software Interrupt Mechanism PE-TI-879, Rev. 1

1 INTRODUCTION

There are three different ways in which a PRIMOS user process may be
interrupted, i.e., asynchronously have its path of execution altered.

1 . 1 The Check

The first and most critical way is via a check. There are currently
four check types:

1) power fail
2) memory parity
3) machine check
4) missing memory

They are caused by some trouble with the hardware. Checks cannot be
handled by a user process and, most often, cause the machine to halt.

1.2 The Fault

The second way a user process may be interrupted is via a fault
are currently 11 fault types:

There

1) restricted instruction mode
2) process
3) page
4) supervisor call
5) unimplimented instruction
6) i l l ega l ins t ruc t ion
7) access violation
8) ari thmetic
9) stack overflow
10) segment
11) pointer

They are caused by various events all within the user process except
for process fault. Some may be handled by the system on behalf of the
user. An example of this type is page fault. Some may be handed to
the user via the condition mechanism. An example of this type is
access violation fault. The stack overflow fault will cause the user's
environment to be initialized. Finally, the process abort may or may
not ever be seen by the user. It is currently divided into five
different abort types:

1) software interrupts
2) I/O alarm
3) disconnect alarm
4) time-out alarm
5) timeslice end alarm

The first four abort types may be seen by the user while timeslice end

*** PRIME RD&E RESTRICTED *** Page

S o f t w a r e I n t e r r u p t M e c h a n i s m P E - T I - 8 7 9 , R e v . 1

is never seen.

1.3 The Software Interrupt

The third way a user process may be interrupted is, in fact, a subclass
of fault. One of the process abort types is handed to the user via the
condition mechanism. It is the software interrupt.

The rest of this paper is devoted to descibing the software interrupt
mechanism with emphasis placed on how to use the mechanism in ring 0.

2 THE PROBLEM

At Rev. 18, some code was introduced into PRIMOS which allows for the
generation of asynchronous software interrupts in a process' execution
space. These in te r rup ts usua l l y resu l t in cond i t ion s igna ls and
subsequent crawlout from ring 0. The crawlout causes the ring 0
execution to be aborted. Such aborts may be quite hazardous to the
integrity of a user's process as many pieces of code in ring 0 will
produce non-reliable results if they are exited before completion.

3 THE SOLUTION

In the past, these events were normally accepted while in ring 0. One
had to explicitly disable these kind of events around critical sections
of code that needed to be atomic. This was done by explicit ly
incrementing a counter named QUITF. The new software interrupt
mechanism normally disables software interrupts while in ring 0. When
one of these events is now detected while in ring 0, it is normally
deferred until execution returns to the outer ring.

4 WHY AND HOW ARE SOFTWARE INTERRUPTS CREATED?

Software interrupts are created by PRIMOS processes which need to
interrupt other processes due to certain external events. These events
must in some way be relayed to a particular process known at the time
of the event. The software interrupt mechanism provides for this
f u n c t i o n .

The following sections describe these various external events, the
software interrupt classes, interrupt priority, the control data base,
and how a software interrupt is set up.

*** PRIME RD&E RESTRICTED *** Page

S o f t w a r e I n t e r r u p t M e c h a n i s m P E - T I - 8 7 9 , R e v . 1

4.1 Software Interrupt Types

In Rev. 19, there are currently seven defined software interrupts with
associated condition names. They are

1) terminal quit (QUIT$),
2) phantom logout notification (PH_LOGO$),
3) cpu watchdog time out (CPU_TIMER$),
4) real time watchdog time out (ALARMS),
5) cross process signalling (CPS$),
6) the logout condition (L0G0UT$), and
7) IPC message waiting (IPC_MSG_WAITIWG$).

The first six types are defined for all Rev. 19 while the last type is
only defined for Rev. 19-3. All of these events are handled by the
software interrupt mechanism.

4.2 Software Interrupt Classes

There are three different classes of software interrupts found within
PRIMOS. These classes came into being at different times within the
evolut ion of the system. The fo l lowing sect ions descr ibes these
classes and when each appeared:

4.2.1 Simple On/Off Interrupt

The easiest class to explain is the simple on/off interrupt. The CPU
watchdog timer is one of these. These interrupts take on only an on or
off s tate. There is no chance that mul t ip le instances of these
interupts will occur. This class of software interrupt was introduced
at Rev. 18.

4.2.2 The Counted Interrupt

The second form of sof tware interrupt is the counted interrupt .
Presently, there is only one of these, terminal quit. A counter for
each ring is used to determine how many times at a given command level
quits have been turned on/off. One may think of these counters as a
stack. The software interrupt mechanism itself does not maintain these
counters. Separate modules/mechanism which the software interrupt
mechanism calls do so. BREAK$ is the module which does this for QUITS.
This class of interrupt was introduced at Rev. 17.

4.2.3 Queued Data Interrupt
The third type of interrupt is the queued data interrupt. Phantom
logout notification is one of these. The queuing mechanisms for these
interrupt types are responsible for queueing the data. The software
interrupt mechanism is only responsib le for turn ing the interrupt
on/off. This class of interrupt was introduced at Rev. 19.

* * * P R I M E R D & E R E S T R I C T E D * * * P a g e 5

S o f t w a r e I n t e r r u p t M e c h a n i s m P E - T I - 8 7 9 , R e v . 1

For the most part, software interrupts will fall into the first class,
the simple on/off interrupt. In part icular, the introduct ion of this
new mechanism provides the PRIMOS programmer with an alternative which
takes the p lace of the second c lass of in terrupt , the counted
interrupt. This is a bonus since more interrupts types can now be
easily defined and no new counter management mechanisms need be built.

4 .3 In terrupt Pr ior i ty

Interrupt priori ty is divided into two catagories, r ing priori ty and
s i g n a l l i n g p r i o r i t y. T h e f o l l o w i n g s e c t i o n s d e s c r i b e t h e s e t w o
catagories .

4.3*1 Ring Priority

PRIMOS together with PRIME hardware has the capability of addressing
three rings of operation, ring 0, ring 1, and ring 3. Ring 0 contains
the lowest level primitives of the operating system. These primitives
encompass such things as process control, file system access, and
networking capabi l i ty. Therefore, th is r ing is granted the highest
privileges with regard to execution environment. Ring 1 is currently
not implimented within the software. When implimented it will contain
PRIME subsystems. It will have the second highest execution privilege.
Ring 3 is the user ring. It contains PRIMOS items such as the command
processor and the CPL processor, and it contains the user application
programs. Ring 3 has the lowest execution priority.

As we grant the user the ability to turn on and off software interrupts
and since a user resides in ring 3, in order to recognize this enabling
setting we must give it priority over anything that the operating
system does in ring 0. Remember, software interrupts are normally not
seen in ring 0. Disregarding the setting in the outer ring would allow
the interrupt to be seen in the outer ring thereby overriding the ring
3 user's setting. Therefore, we have made the rule that all software
interrupts will behave in the same manner with regard to ring priority
and outer rings have have higher priority than inner rings. In other
words, if a software interrupt is seen in ring 0 while enabled in ring
0, before the interrupt condition is signalled we must make sure that
the interrupt is enabled in the outer rings.

4.3.2 Signal l ing Pr ior i ty

Due to the nature of a time shared operating system, it is possible
that more than one software interrupt may be pending at one time. That
is, while a user is waiting for the machine, more than one interrupt
may occur. For example, a user may type quit and their spawned phantom
may complete while the user is waiting for the machine. This leaves
two interrupts pending. When the user gains control of the machine, we
must see one of these interrupts. The order in which we see software

* * * P R I M E R D & E R E S T R I C T E D * * * P a g e 6

S o f t w a r e I n t e r r u p t M e c h a n i s m P E - T I - 8 7 9 , R e v . 1

interrupts is known as signalling priority.

Signalling priority as currently set up within PRIMOS at Rev. 19
orders the acceptance of software interrupts as follows:

1) Logout

2) CPU Timer

3) Real Time Timer

4) IPC Message Waiting

5) Phantom Logout Notification

6) Cross Process Signalling

7) Terminal QUIT

This order is based upon an educated guess at the importance of the
various types of interrupts. It is therefore somewhat arbitrary. The
order is imposed by the software interrupt handler module, SW$ABT. It
can be varied by rearanging the order within SW$ABT. SW$ABT has been
constructed to make any reordering of priorities very simple.

4.4 The Software Interrupt Control Data Base

The data base used by the software interrupt control and handler
modules, is presently contained within a user's ring 0 stack base,
PUDCOM. It is found here because the information relates to a user on
a per-user basis, and it must be available to ring 0. All control and
handler modules reside in ring 0. The control modules SWINT, SWRA0F,
and SW$0N are accessable to the outer rings. The control modules
SW$MKRCS and SW$R00FF are available only to ring 0. SW$ABT can only be
see in ring 0.

There are five kinds of information stored within PUDCOM that the
software interrupt mechanism uses.

1) The first information type tells the mechanism whether or not
an interrupt type is pending. Its form is as follows:

de l 1 b_swi typ based, / * pend ing sof tware in ter rupts * /
2 te rm ina l b i t (1) , / * te rm ina l qu i t * /
2 cpu_t ime bi t (l) , /* cpu t imer * /
2 a l a r m b i t (1) , / * r e a l t i m e t i m e r * /
2 l o g o u t b i t (1) , / * l o g o u t c o n d i t i o n * /
2 I o n b i t (1) , / * p h a n t o m l o g o u t * /
2 c p s b i t (1) , / * c r o s s p r o c e s s s i g n a l l i n g * /
2 ipemw bit(1), /* IPC message wait ing */
2 n u b i t (9) ; / * n o t u s e d * /

Its name is PUDCOM.SWITYP (Software Interrupt Type).

* * * P R I M E R D & E R E S T R I C T E D * * * P a g e 7

Software Interrupt Mechanism PE-TI-879, Rev. 1

If an interrupt is pending, its associated bit will be on.
interrupt is not pending, its associated bit will be off.

I f an

2) The second information type tells the mechanism, on a per ring
bas is , wh ich o f the on/o f f in ter rupt types are enab led or
disabled. Its form is l ike B_SWITYP defined above with the
e x c e p t i o n t h a t t h e t e r m i n a l fi e l d i s i g n o r e d . T h e n a m e s
corresponding to the three words in PUDCOM which contain this
information are ROSWIN (Ring 0 Software Interrupt Enabled), R1SWIN
(Ring 1 Software Interrupt Enabled), and R3SWIN (Ring 0 Software
Interrupt Enabled). For each ring, if the bit corresponding to an
interrupt type is on, then the interrupt is enabled in that ring.

3) The third information type tells the mechanism, on a per ring
basis, whether or not terminal quits are enabled. Its form is
that of an integer as it contains a count of how many times quits
have been disabled in ring 1 and 3 or enabled in ring 0.
Remember, software interrupts are normally on in the outer rings
and off in ring 0. The names corresponding to the three words in
PUDCOM which contain this information are ROQUIT, R1QUIT, and
R3QUIT. The form of these three words is as follows:

del rOquit fixed bin,

r lqu i t fixed b in,

r3quit fixed bin;

/* ring 0 quit enable count -
> 0 quits enabled
= 0 quits disabled
< 0 should not be this value */

/* ring 1 quit inhibit count-
> 0 quits inhibited
= 0 quits enabled
< 0 should not be this value */

/* ring 3 quit inhibit count-
> 0 quits inhibited
= 0 quits enabled
< 0 should not be this value */

4) The fourth piece of information that the software interrupt
mechanism uses is the deferred interrupt flag in the FLAGBT word
in PUDCOM. It indicates that an interrupt has already been
deferred. It only has meaning in ring 0.

5) The fifth piece of information is the not alright to take
software interrupts now flag in the FLAGBT word in PUDCOM. It is
used as a timing lock and indicates whether or not it is alright
to process a software interrupt. It only has meaning in ring 0.

4.5 How A Software Interrupt Is Set Up

The mechanism is broken into two sides, the interruptor side and the
interruptee side. The interruptor side is responsible for detect ing
the external event in question, determining which process should be
told of this event, and starting off the software interrupt process.
The interruptee side is responsible for noticing that the interruptor

*** PRIME RD&E RESTRICTED *** Page

S o f t w a r e I n t e r r u p t M e c h a n i s m P E - T I - 3 7 9 , R e v . 1

has started the software interrupt process, fetching the interrupt
type, and handing this infromation over to the user code.

For purposes of clarity the following discussions will be presented in
a procedural fashion. Also, the terminal quit event will be traced.
We will assume that the terminal quit will occur when the user is
performing file I/O and did not create an on-unit for the QUIT$
condition .

4.5.1 Starting The Process Off - SETSWI

1) When a process notes an external event which is one of the software
interrupt types it must first determine to which process this event
belongs. The AMLC detects that the user on line 1 enters a terminal
quit. It then looks up line 1 and finds that it belongs to user 2.

2) The process calls SETSWI with the proper key for the interrupt type
in question and with the user to be interrupted. The AMLC calls SETSWI
with the terminal quit key for user 2.

3) SETSWI, based on the passed interrupt key, first sets the proper bit
in the selected user's software interrupt type word (PUDCOM.SWITYP).
It then calls SETABT with this user number and the software interrupt
abort key to setup a process abort for the selected user. SETSWI sets
the terminal quit bit on in user 2's PUDCOM.SWITYP and then calls
SETABT with user 2 and the software interrupt key.

4) SETABT, based on the passed abort key, sets the proper bit in the
selected user's process control block (PCB) abort word. Additionally,
if SETABT finds that the user to be aborted is waiting on a software
interruptable semaphore, that semaphore is notified. SETABT sets the
software interrupt bit on in user 2's PCB abort word and notifies the
semaphore user 2 is waiting on if user 2 is waiting on a software
interruptable semaphore.

4.5.2 Noticing The Interrupt - The Dispatcher

1) The next time the microcode dispatcher detects that a user is to
run, it checks the user's abort flags in its PCB. If it finds any of
these flags on, it interrupts the user's normal flow of control by
executing the process abort code. The process abort code is defined to
be at a location in memory pointed to by the fault table pointer in a
user's PCB. The dispatcher notes that an abort flag in on in user 2's
PCB. It interrupts user 2's normal flow of control and executes the
process abort code.
2) The process abort code fetches the abort flags from the user's PCB
and stores these flags in the user's PUDCOM.ABSAVE. Whenever a bit is
on in PUDCOM.ABSAVE, we say that an abort is pending. The process
abort handler, PABORT, is then called. User 2's abort flags are saved
in user 2's PUDCOM.ABSAVE and PABORT is called.

*** PRIME RD&E RESTRICTED *** Page

S o f t w a r e I n t e r r u p t M e c h a n i s m P E - T I - 8 7 9 , R e v . 1

3) PABORT scans PUDCOM.ABSAVE to determine which abort is pending. It
then calls a specific abort type handler based on this type. PABORT
finds that user 2 has a software interrupt abort pending and calls the
software interrupt abort handler, SW$ABT.

4.5.3 Handling The Software Interrupt Type - SW$ABT

1) SW$ABT scans PUDCOM.SWITYP to determine which software interrupt is
pending. SW$ABT finds that user 2 has a terminal quit pending.

2) Based on the interrupted ring of execution and the software
interrupt control words, PUDCOM.ROSWIN and PUDCOM.R3SWIN, SW$ABT will
either immediately signal the condition associated with the detected
interrupt, leave the interrupt pending, or defer the interrupt. The
rules for signalling, deferring, and pending are as follows:

1) The interrupt is immediately signalled if in ring 3 and R3SWIN
indicates alright to signal or if in ring 0 and both SWIN words
indicate it is alright to immediately signal.

2) The interrupt is deferred if in ring 0 and ROSWIN indicates not
to signal.

3) The interrupt is left pending if R3SWIN indicates not to
s i g n a l .

For terminal quits, PUDCOM.ROQUIT and PUDCOM.R3QUIT are examined
instead of the SWIN words.

For either the immediate signal or the deferal case, the detected
interrupt's PUDCOM.SWITYP bit is cleared, i.e., made not pending.

SW$ABT defers the terminal quit as the user is executing file I/O in
ring 0. SW$ABT also clears the terminal quit bit in PUDCOM.SWITYP.

4.5.4 Deferring A Software Interrupt - SW$ABT

1) SW$ABT finds the entry frame into ring 0. SW$ABT finds the frame of
PRWF$$ through which file I/O is being done.

2) SW$ABT checks to make sure no other faults have happened while in
ring 0. SW$ABT finds that no other faults have occurred while in
PRWF$$.

3) SW$ABT sets up its stack frame as a condition frame which indicates
the approriate software interrupt condition to be eventually signalled.
SW$ABT sets up its stack frame for the terminal quit condition.

4) CRAWL_ is then called with the defer crawlout key and the software
interrupt crawlout fault intercept monitor (SWFIM_) to build a deferred
crawlout frame for the appropriate condition. CRAWL_ is requested to
build a deferred crawlout frame for the terminal quit condition.

* * * PRIME RD&E RESTRICTED *** Page 10

S o f t w a r e I n t e r r u p t M e c h a n i s m P E - T I - 8 7 9 , R e v . 1

4.5.5 Building The Deferred Crawlout - CRAWL

1) CRAWL_ builds a new frame on the outer ring into which it places all
the infromation passed to it by its caller. CRAWL_ builds a new frame
and puts the infromation about the terminal quit into it as passed to
it by SW3A3T.

2) The return stack base (SB) and program counter (PB) in the base ring
0 stack frame are copied to the new stack frame. The SB and PB from
PRWFSS's stack frame are copied to the new stack frame.

3) The return SB of the base ring 0 stack frame is set to the new stack
frame. The return SB for PRWF$$ is set to the new stack frame.

4) The return PB of the base stack frame is set to the first
instruction of the passe crawlout fault intercept monitor. The return
PB for PRWF$$ is set to the first instruction of SWFIM_.

5) CRAWL_ then returns to its caller. CRAWL_ returns to SW$ABT.

4.5.6 Making The Deferred Software Interrupt Happen - SWFIM

1) SW$ABT returns to its caller, PABORT.

2) PABORT returns to its caller, the process abort code.

3) The process abort code returns to the interrupted code. The process
abort code returns to PRWF$$.

4) When the normal flow of control in ring 0 reaches the base stack
frame, flow of control will procede to the software interrupt crawlout
monitor. PRWF$$ will return to SWFIM_.

5) SWFIM_ will first call a module in ring 0, SWSRST, to reset the ring
0 part of the software interrupt mechanism, and then signal the
condition that CRAWL_ set up. SWFIM_ will call SW$RST and then signal
the QUIT$ condition.

6) The condition will be raised and handled by either the user if the
user has an on-unit built for this condition or by the default on-unit
handler. QUITS will be raised and handled by the default on-unit
handler as the user does not have a QUIT$ on-unit built.

4.5.7 What If The User Was In Software Interruptable Ring 0 Code?

If the user had been in some piece of ring 0 software interruptable
code such as C1IN$, then everything would procede as above except for
the fol lowing:

1) SWSABT would detect that the interrupt could be taken
immediate ly.

* * * PRIME RD&E RESTRICTED ** * Page 11

Software Interrupt Mechanism PE-TI-879, Rev. 1

2) CRAWL_ would be called without the defer key.

3) CRAWL_ would set up the for the normal crawlout fault monitor
(CRFIM_), not for SWFIM_.
4) CRAWL_ would not return to SWSABT. Instead, it would call
UMWIND_ to unwind the ring 0 stack. Unwinding is the process of
insuring that no further action be taken in the current ring
except for final return from that ring.

Note that CRFIM_ would be returned to from ring 0. It would call
SW$RST and signal the QUITS condition.

4.5.8 What If A Software Interrupt Was Disabled?

A user can disable a software interrupt. This is done by calling
either SWSINT, SWSRAOF, or BREAKS for terminal quit. See Software
Inter rupt Contro l Module Funct ional Spec. PE-TI -1005 for fur ther
details. If this is true then everything would procede as above except
for the following:

1) SWSABT would detect that the interrupt was disabled. R3QUIT
would not be 0.

2) SWSABT would then return without performing any other actions.

Note that the next time this user goes through the dispatcher, the
above sequence will be repeated. In fact, it will be repeated until
the interrupt is enabled by the user and the signal raised.

The following figure il lustrates the sequence of events that occur
within the software interrupt mechanism for a deferred terminal quit
i n t e r r u p t .

*** PRIME RD&E RESTRICTED *** Page 12

Software Interrupt Mechanism PE-TI-879, Rev. 1

AMLC Sees Terminal Quit On Line 1

AMLC Determines That Line 1 Is User 2
i
i

v
AMLC Calls SETSWI To Set Up Terminal Quit

Software Interrupt For User 2

SETSWI Sets Terminal Quit Bit In
User 2's PUDCOM.SWITYP

SETSWI Calls SETABT To Set UP Software
Interrupt Process Abort For User 2

SETABT Sets Software Interrupt Bit In
User 2's PCB Process Abort Flag Word

i
i

/
/

DISPATCHER Notes Bit On In User 2's PCB
Abort Flags And Starts Process Abort Code

Process Abort Code Copies PCB Process
Abort Flags To PUDCOM.ABSAVE

i
i

v
Process Abort Code Calls PABORT

i
i

v
PABORT Sees Its A Software Interrupt

And Calls SWSABT
i

v
SWSABT Finds That This Is A Terminal Quit

SWSABT Sees That User 2 Is Executing In Ring 0
With Software Interrupts Enabled In Ring 3

SWSABT Clears The Terminal Quit Bit In
PUDCOM.SWITYP

i
i

v
SW$ABT Sets Up For A Deferred Software Interrupt

i
i

v

I n t e r r u p t o r
Side

I n t e r r u p t o r
Side

I n t e r r u p t o r
Side

I n t e r r u p t e e
Side

I n t e r r u p t e e
Side

I n t e r r u p t e e
Side

I n t e r r u p t e e
Side

I n t e r r u p t e e
Side

*** PRIME RD&E RESTRICTED *** Page 13

Software Interrupt Mechanism PE-TI-879, Rev. 1

SWSABT Calls CRAWL_ To Build The Deferred
Software Interrupt

CRAWL_ Builds The New Stack Frame And
Sets Up The PBs and SBs For SWFIM

■RAWL Returns To SWSABT

SWSABT Returns To PABORT
i
i

v
PABORT Returns To The Process Abort Code

i
i

v
The Process Abort Code Returns To PRWFSS

i
i

v
PRWFSS Finishes And Returns To SWFIM__

i
i

v
SWFIM_ Calls SWSRST To Reset Ring 0 PartOf Software Interrupt Mechanism

i
i

v
SWFIM Signals The QUITS Condition

The Default On-Unit Handles The QUITS

I n t e r r u p t e e
Side

I n t e r r u p t e e
Side

I n t e r r u p t e e
Side

I n t e r r u p t e e
Side

Figure 1 - History Of A Terminal Quit

*** PRIME RD&E RESTRICTED *** Page 14

Software Interrupt Mechanism PE-TI-879, Rev. 1

5 HANDLING SOFTWARE INTERRUPTS IN RING 0

5.1 Comparison Between Old And New Ring 0 Software Interrupt Handling

in ring 0 which disabled software interrupts
0 was known as the ring 0 quit mechanism. It allowed a ring
to inhibit software interrupts by incrementing the ring 0 quit
counter, QUITF. When this was done, quit
software interrupts back on,
noted that some of the modules in ring 0 that needed
interrupts inhibited, such as TSAMLC, did
p r o p e r l y.

quit events we
a call to QUITON had

ignored .
to be made

The old mechanism in ring 0 which disabled software interrupts in ring
0 module

i n h i b i t
To turn

It was
sof tware

x i i i i i u x u c u , o u u i i a o W n i - i u u , u x u n o t u s e t h e m e c h a n i s m
To make sure that these modules used the old quit inhibition

mechanism properly would have required a major code audit. After
considering the problem and realizing that most of the kernal code does
not want to be interrupted by the these events, it was decided to
normally inhibit all software interrupts in ring 0.

5.2 Enabling Receipt Of Software Interrupt In Ring 0

To enable the acceptance of software interrupts one must invoke
function SWSMKRCS before entering the interruptable section. One
also invoke the procedure SWSROOFF to disable software interrupts

the
must
when

reverse c r i t i ca ll eav ing th i s sec t i on . Th i s sec t i on i s ca l l ed ;
section. Because of the internals of the new mechanism, surrounding an
interruptable section with calls to SWSMKRCS and SWSROOFF is not
sufficient. One coding rule must be followed.

Between the top of a module that is going to allow software
interrupts and the final call to SWSROOFF, the module must be
r e s t a r t a b l e .

Restartable sections of code are those that may be completely scrapped
and may be resumed from their beginning. Visually, the following
diagram depicts this rule:

*** PRIME RD&E RESTRICTED *** Page 15

Software Interrupt Mechanism PE-TI-879, Rev. 1

Software Inter
rupts Inhib i ted

Here

I n t e r r u p t s

Enabled

Here

I n t e r r u p t s
I n h i b i t e d

Here

I n t e r r u p t s
Enabled

Here

In t s . I nh ib i t ed

if sw$mkrcs(value)
*= 0 then
r e t u r n ;

cal l sw$r0off
(value) ;

if sw$mkrcs(value)
~= 0 then
r e t u r n ;

cal l sw$r0off
(v a l u e) ;

Start of Module

From Start

To The

Last Call

To SWSROOFF,

The Module

Must

Be

Res ta r tab le .

End of Module

Note that between the calls to SWSMKRCS and SWSROOFF the module is
enabled .

Figure 2 - Making Reverse Critical Sections

*** PRIME RD&E RESTRICTED *** Page 16

S o f t w a r e I n t e r r u p t M e c h a n i s m P E - T I - 8 7 9 , R e v . 1

5.3 Making A Critical Section In Ring 0

Although the software interrupt mechanism normally disables interrupts
in ring 0, on rare occasions it may be necessary to insure that ring 0
is in a critical section. This may occur because a prior module in
ring 0 has enabled any or all of the software interrupts. To make sure
a critical section exists, the following procedure must be followed:

1) Get and save the present value for all counted software
i n t e r r u p t s

2) Set the value for all counted interrupts to 0

3) Call SWSINT with the read all off key to get present enabled
state which must be saved

To end the crtical section, do the following:

1) Call SWSINT with the on key and the saved present enable state

2) Restore the saved value for all counted software interrupts

5.4 Examples Of Ring 0 Users

As was mentioned above, most code in ring 0 must have software
interrupts turned off while executing. Examples are PRWFSS and TNOU.
PRWF$$, the file system read, write, and position a file routine takes
certain locks and transfers data to or from a user buffer to a file
s y s t e m b u f f e r. I f i t w e r e i n t e r r u p t e d t h i s t r a n f e r a l c o u l d b e
incomplete. TNOU prints characters to a terminal. If it were to be
interrupted during printing, the possibil i ty exists that duplication of
printed characters could occur.
The new software interrupt mechanism insures that the integrity of this
class of routines is maintained.

Some ring 0 code must have software interrupts enable somewhere during
the course of their lifetime. An example of this kind of code is
TSAMLC. When in TSAMLC, a user is waiting for terminal input. During
this wait, it must be possible for software interrupts to be handled
immediately. Therefore, T$AMLC makes use of SWSMKRCS and SWSROOFF to
allow receipt of software interrupts. The simplest event to understand
is real time alarm. This event must be recognized by T$AMLC. If it
weren't and the assigned AMLC line went dead, then the process running
TSAMLC could be caught waiting forever for characters that would not
come. Therefore, TSAMLC makes the reverse critical section.

CRAWL_ is a routine which may execute in ring 0. When performing its
normal operations, it must be sure that a crit ical section exists.
Therefore, CRAWL_ presently must explicitly create a critical section
even though it is in ring 0. It does this by following the procedure
noted in Creating A Critical Section In Ring 0. Since there is only
one counted interrupt today, terminal quits, only it is saved and

*** PRIME RD&E RESTRICTED ** * Page 17

Software Interrupt Mechanism PE-TI-879, Rev._J,_

restored. This is done by use of the BREAKS interface.

6 MORE INFORMATION ON USING THE SOFTWARE INTERRUPT MECHANISM

This paper explains why the software interrupt mechanism was created,
how it works, and how it is sometimes used in ring 0. It does not
explain the general usage of the mechanism especially as relates to the
ring 3 user. Specifically, this paper does not discuss how to control
the enabling/disabling of software interrupts. To find out more about
why the enable/disable feature is needed read Software Interrupt
Control Module Proposal PE-TI-1004. To find out more about how to use
the enable/disable features read Software Interrupt Control Module
Functional Spec. PE-TI-1005.

*** PRIME RD&E RESTRICTED *** Page 13

	Cover Page
	1
	Table of Contents
	2
	Introduction
	3
	The Problem
	The Solution
	Why and How Are Software Interrupts Created?
	4
	-- Software Interrupt Types
	-- Software Interrupt Classes
	5
	-- Interrupt Priority
	6
	-- The Software Interrupt Control Data Base
	7
	-- How a Software Interrupt Is Set Up
	8
	9
	10
	11
	12
	13
	14
	Handling Software Interrupts In Ring 0
	15
	16
	17
	More Information On Using the Software Interrupt Mechanism
	18

